Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(3): e0011141, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972237

RESUMO

Tick-borne encephalitis virus (TBEV) is a flavivirus which causes an acute or sometimes chronic infection that frequently has severe neurological consequences, and is a major public health threat in Eurasia. TBEV is genetically classified into three distinct subtypes; however, at least one group of isolates, the Baikal subtype, also referred to as "886-84-like", challenges this classification. Baikal TBEV is a persistent group which has been repeatedly isolated from ticks and small mammals in the Buryat Republic, Irkutsk and Trans-Baikal regions of Russia for several decades. One case of meningoencephalitis with a lethal outcome caused by this subtype has been described in Mongolia in 2010. While recombination is frequent in Flaviviridae, its role in the evolution of TBEV has not been established. Here, we isolate and sequence four novel Baikal TBEV samples obtained in Eastern Siberia. Using a set of methods for inference of recombination events, including a newly developed phylogenetic method allowing for formal statistical testing for such events in the past, we find robust support for a difference in phylogenetic histories between genomic regions, indicating recombination at origin of the Baikal TBEV. This finding extends our understanding of the role of recombination in the evolution of this human pathogen.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Carrapatos , Animais , Humanos , Filogenia , Sibéria , Mamíferos , Recombinação Genética
2.
PLoS One ; 14(4): e0215075, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958863

RESUMO

Tick-borne encephalitis virus (TBEV) is the most important tick-transmitted pathogen. It belongs to the Flaviviridae family and causes severe human neuroinfections. In this study, protective efficacy of the chimeric antibody chFVN145 was examined in mice infected with strains belonging to the Far-Eastern, European, and Siberian subtypes of TBEV, and the antibody showed clear therapeutic efficacy when it was administered once one, two, or three days after infection. The efficacy was independent of the TBEV strain used to infect the mice; however, the survival rate of the mice was dependent on the dose of TBEV and of the antibody. No enhancement of TBEV infection was observed when the mice were treated with non-protective doses of chFVN145. Using a panel of recombinant fragments of the TBEV glycoprotein E, the neutralizing epitope for chFVN145 was localized in domain III of the TBEV glycoprotein E, in a region between amino acid residues 301 and 359. In addition, three potential sites responsible for binding with chFVN145 were determined using peptide phage display libraries, and 3D modeling demonstrated that the sites do not contact the fusion loop and, hence, their binding with chFVN145 does not result in increased attachment of TBEV to target cells.


Assuntos
Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Mapeamento de Epitopos , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...